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An Evaluation of a Markov Chain Monte Carlo
Method for the Rasch Model

Abstract

The accuracy of the Markov chain Monte Carlo procedure, Gibbs sampling, was considered

for estimation of item and ability parameters of the one-parameter logistic model. Four data

sets were analyzed to evaluate the Gibbs sampling procedure. Data sets were also analyzed

using methods of conditional maximum likelihood, marginal maximum likelihood, and joint

maximum likelihood. Two different ability estimation methods, maximum likelihood and

expected a posteriori, were employed under the marginal maximum likelihood estimation of

item parameters. Item parameter estimates from the four methods were almost identical.

Ability estimates from Gibbs sampling were similar to those obtained from the expected a

posteriori method.

Index terms: Bayesian inference, conditional maximum likelihood, Gibbs sampling, item

response theory, joint maximum likelihood, Markov chain Monte Carlo, marginal maximum

likelihood, Rasch model.
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Introduction

Some problems in statistical inference require integration over possibly high-dimensional

probability distributions in order to estimate model parameters of interest or to obtain

characteristics of model parameters. One such problem is estimation of item and ability

parameters in the context of item response theory (IRT). Except for certain rather simple

problems with highly structured frameworks (e.g., an exponential family together with

conjugate priors in Bayesian inference), the required integrations may not be analytically

feasible. Many efficient numerical approximation strategies have been recently developed

for complicated integrations. In this paper, we examine the accuracy of one of the efficient

numerical approximation strategies, a Markov Chain Monte Carlo (MCMC) method, for

estimation of IRT item and ability parameters. We focus on the accuracy of a particular

MCMC procedure, Gibbs sampling (Geman Sz Geman, 1984), for estimation of item and

ability parameters under the one-parameter logistic (1PL) model (Rasch, 1960/1980).

A number of ways exist for implementing the MCMC methods. For a review, refer

to Bernardo and Smith (1994), Carlin and Louis (1996), and Gelman, Carlin, Stern,

and Rubin (1995). Metropolis and Ulam (1949), Metropolis, Rosenbluth, Rosenbluth,

Teller, and Teller (1953), and Hasting (1970) present a general framework within which

Gibbs sampling (Geman & Geman, 1984) can be considered as a special case. In this

regard, Gelfand and Smith (1990) discuss several different Monte Carlo-based approaches,

including Gibbs sampling, for calculating marginal densities. Gilks, Richardson, and

Spiegelhalter (1996) contains a recent survey of applications of Gibbs sampling. Basically

Gibbs sampling is applicable for obtaining parameter estimates from the complicated joint

posterior distribution in Bayesian estimation under IRT (e.g., Mislevy, 1986; Swaminathan

& Gifford, 1982, 1985, 1986; Tsutakawa & Lin, 1986).

Albert (1992) applied Gibbs sampling in the context of IRT to estimate item parameters

for the two-parameter normal ogive model and compared these estimates with those obtained

using maximum likelihood estimation. Baker (1998) has also investigated item parameter

recovery characteristics of Albert's Gibbs sampling method for item parameter estimation

via a simulation study. Patz and Junker (1997) developed a MCMC method based on the

Metropolis-Hasting algorithm and presented an illustration using the two-parameter logistic

model.

MCMC computer programs in IRT have been developed largely only for specific
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applications. For example, Albert (1992) used a computer program written in MATLAB

(The Math Works, Inc., 1996). Baker (1998) developed a specialized FORTRAN version of

Albert's Gibbs sampling program to estimate item parameters of the two parameter normal

ogive model. Patz and Junker (1997) developed an S-PLUS code (Math Soft, InC., 1995).

Spiegelhalter, Thomas, Best, and Gilks (1997) have also developed a general Gibbs sampling

computer program BUGS for Bayesian estimation, using the adaptive rejection sampling

algorithm (Gilks & Wild, 1992). The computer program BUGS requires specification of the

complete conditional distributions.

For the Rasch model (Rasch, 1960/1980; Fischer & Molenaar, 1995; Wright & Stone,

1979) many estimation methods can be used to obtain item and ability parameter estimates

(Molenaar, 1995; Hoijtnik & Boomsma, 1995). Item and person parameters can be estimated

jointly by maximizing the joint likelihood function (i.e., JML, Wright & Stone, 1979).

Conditional maximum likelihood (CML) seems to be the standard estimation method

under the Rasch model for estimation of item parameters (e.g., Molenaar, 1995). Also,

Marginal maximum likelihood (MML) estimation using the expectation and maximization

algorithm can be used to obtain item parameter estimates (Thissen, 1982). In addition,

joint Bayesian estimation and marginal Bayesian estimation can be employed to obtain

parameter estimates under the Rasch model (e.g., Swaminathan & Gifford, 1982). The

Gibbs sampling procedure approaches the estimation of item and ability parameters using

the joint posterior distribution rather than the marginal distribution. Even so, all methods

should yield comparable item parameter estimates, especially when comparable priors are

used or when ignorance or locally-uniform priors are used. This paper was designed to

investigate this issue using the 1PL model. Specifically, item and ability estimates from the

methods of Gibbs sampling, CML, MML, and JML, were examined and compared.

Theoretical Framework

Joint Estimation Procedures

Consider binary responses to a test with n items by each of N examinees. A response of

examinee i to item j is represented by a random variable Yij, where i = 1(1)N and j = 1(1)n.

The probability of a correct response of examinee i to item j is given by P(Yij =110i,ej) =

and the probability of an incorrect response is given by P(Yij = Ole2,6j) = 1 = Qij,

where Oi is ability and is the item parameter or possibly the vector of item parameters.



For examinee i, there is an observed vector of dichotomously scored item responses

of length n, Y =--- (1'i,.. , Yin)'. Under the assumption of conditional independence, the

probability of Yi given 0i and the vector of all item parameters, 6 = (61, ,en)', is

p(Yil9i, e) = H ii37Y`i (1)
j=1

The probability of obtaining the N x n response matrix Y is given by

N n
p(Yle, = H II P3 PO Yu Q3 (90 Yu = elY) (2)

i=1 j=1

where 9 = (01, , . Note that 1(0, elY) can be regarded as a joint function of 0 and

6 given the data Y. Wright and Stone (1979) describe the joint estimation of 0 and 6

(cf. Birnbaum, 1968; Lord, 1980, 1986). In implementation of JML, the item parameter

estimation part for maximizing /(eIY, e) and the ability parameter estimation part for

maximizing 1(0117, 4") are iterated until a stable set of maximum likelihood estimates of item

and ability parameters is obtained.

Extending the idea of joint maximization, Swaminathan and Gifford (1982, 1985, 1986)

suggested that 0 and 6 can be estimated by joint maximization with respect to the parameters

of the posterior density

73

p(Y 10, OPP, 6) oc 1(9, lY)p(9, e),(9, elY) = p(y) (3)

where a denotes proportionality and p(0 , 6) is the prior density of the parameters 0 and 6.

This procedure is called joint Bayesian estimation. A prior distribution represents what is

known about unknown parameters before the data are obtained. Prior knowledge or even

relative ignorance can be represented by such a distribution. Under the assumption that

priors of 0 and 6 are independently distributed with probability density functions p(0) and

p(6), the item parameter estimation part maximizing 1(eIY, e)p(e), and the ability parameter

estimation part maximizing 1(0117, .0p(0) are iterated to obtain the Bayes modal estimates

of item and ability parameters.

Conditional Maximum Likelihood

Andersen (1970, 1972) showed that consistent estimates of item parameters can be obtained

using the conditional estimation procedure. The conditional estimation procedure is based

on the availability of sufficient statistics for the ability parameters. Under the Rasch model,
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the number correct score, Ri = Ei is the sufficient statistics for 0i and, consequently, R

is the sufficient statistics for 9 . For a given examinee with 9, the conditional probability of

Yi given Ri can be written as
p(Yi192, e)e) = p(YdRi,e)

which does not contain 9. Hence, the entire likelihood can be expressed in terms of R instead

of 0, that is,

(4)

1(CIY, . (5)

The CML estimates of item parameters can be obtained by maximizing the conditional

likelihood function without any reference to the ability parameters. The ability parameters

are estimated separately under CML, in general, using the maximum likelihood method.

The conditional likelihood function involves computing elementary symmetric functions (see

Baker & Harwell, 1996).

Marginal Estimation Procedures

In marginal solutions, ability will be integrated out from either the likelihood function or

the posterior distribution. The marginal probability of obtaining the response vector Yi for

examinee i sampled from a given population is

p(Yile) = f PNei, Op(ei)clOi, (6)

where p(02) is the population distribution of 02. Without loss of generality, we can assume

that the 0i are independent and identically distributed as standard normal, Oi --, N(0, 1). This

assumption may be relaxed as the ability distribution can also be empirically characterized

(Bock & Aitkin, 1981). The marginal probability of Yi can be approxithated with any

specified degree of precision by Gaussian quadrature formulas (Stroud Sz Secrest, 1966).

The marginal probability of obtaining the N x n response matrix Y is given by

p(I) = H(e) = l(CIY), (7)

where /(CI Y) can be regarded as a function of given the data Y. In MML, this marginal

likelihood is maximized to obtain maximum likelihood estimates of item parameters (Bock

Aitkin, 1980; Thissen, 1982). Ability parameters are estimated after obtaining the item

parameter estimates assuming the estimates are the true parameter values.



Bayes' theorem tells us that the marginal posterior probability distribution for 6 given

Y is proportional to the product of the marginal likelihood for 6. given Y and the prior

distribution of 6. That is,

p(6117) =
P(MP(6)

/(eiY)P(6). (8)
P(Y)

The marginal likelihood function represents the information obtained about 6 from the data.

In this way, the data modify our prior knowledge of 6. In marginal Bayesian estimation of

item parameters, the marginal posterior is maximized to obtain Bayes modal estimates of

item parameters (Mislevy, 1986).

Gibbs Sampling

The main feature of MCMC methods is to obtain a sample of parameter values from the

posterior density (Tanner, 1996). The sample of parameter values then can be used to

estimate some functions or moments (e.g., mean and variance) of the posterior density of

the parameter of interest. In comparison, in the above IRT estimation procedures via JML,

CML, or MML, the task is to obtain modes of the likelihood function or of the posterior

distribution.
The Gibbs sampling algorithm is as follows (Gelfand & Smith, 1990; Tanner, 1996).

First, instead of using 0 and 6, let co be a vector of parameters with k elements. Suppose

that the full or complete conditional distributions, p(coilcoj, Y), where i = 1(1)k and j i,

are available for sampling. That is, samples may be generated by some method given values

of the appropriate conditioning random variables. Then given an arbitrary set of starting

values, cor, , col()) , the algorithm proceeds as in Figure 1. The vectors co0),

are a realization of a Markov chain with a transition probability from w(t) to co(t+1) given by

p(w(t) w(t+1)) lip(wt+1)14), j,i,c4+1),j,
1=1

Insert Figure 1 about here

(9)

The joint distribution of w(t) converges geometrically to the posterior distribution p(wlY)

as t oo (Geman & Geman, 1984; Bernardo & Smith, 1994). In particular, cot) tends to

be distributed as a random quantity whose density is p(wi In. Now suppose that there exist
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m replications of the t iterations. For large t, the replicates wlit), , u4.,,,t) are approximately

a random sample from p(wilY). If we make m reasonably large, then an estimate, 73(w1lY),

can be obtained either as a kernel density estimate derived from the replicates or as

1

15(wilY) Ep(wil4), Y). (10)
m

In the context of IRT, Gibbs sampling tries to obtain or sample sets of parameters from

the joint posterior density p(0, eiY). Inferences with regard to parameters can then be made

using the sampled parameters. Note that inference for both 0 and e can be made from the

Gibbs sampling procedure.

Steps of Gibbs Sampling

Gibbs sampling uses the following four basic steps (cf. Spiegelhalter, Best, Gilks, & Inskip,

1996):

1. Full conditional distributions and sampling methods for unobserved parameters must

be specified.

2. Starting values must be provided.

3. Output must be monitored.

4. Summary statistics (e.g., estimates and standard errors) for quantities of interest must

be calculated.

Discussion of the four steps involved are presented in detail below using four data sets

(i.e., Examples 1 to 4), especially in Example 1. In addition, comparisons with the results

from CML, MML, and JML as implemented in the computer programs, PML (Molenaar,

1990), BILOG (Mislevy & Bock, 1990) and BIGSCALE (Wright, Linacre, & Schultz,

1989), are presented. The four data sets analyzed in Examples 1 to 4 represent different

calibration situations under the Rasch model, ranging from an extremely small number of

items/examinees to a relatively large number of items/examinees.

Example 1

Data

The first example is presented using the familiar Law School Admission Test Section 6

(LSAT6) data from Bock and Lieberman (1970) (see also Andersen, 1980; Bock & Aitkin,
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1981). The LSAT6 data are given in Table 1. Model parameters were estimated by Gibbs

sampling using the computer program BUGS (Spiegelhalter et al., 1997). These same LSAT6

data have been analyzed under the 1PL model and under the two-parameter normal ogive

(i.e., probit) model in Spiegelhalter, Thomas, Best, and Gilks (1996). Spiegelhalter, Thomas,

et al. (1996) also compared the BUGS results with those from Bock and Aitkin (19'81).

Insert Table 1 about here

Model Specifications

The model specifications are used as input to the BUGS computer program. In the LSAT6

data set, the item responses Yij are independent, conditional on their parameters P. For

examinee i and item j, each Pij is a function of the ability parameter Oi, the location

parameter 0j, and the slope parameter a under the 1PL (cf. Thissen, 1982). The Oi are

assumed to be independently drawn from a standard normal distribution for scaling purposes.

Figure 2 is adopted from Spiegelhalter, Thomas, et al. (1996) and shows a directed acyclic

graph (see Lauritzen, Dawid, Larsen, & Leimer, 1990; Whittaker, 1990; Spiegelhalter, Dawid,

Lauritzen, & Cowell, 1993) based on these assumptions. It is only possible to proceed by

following the directions of the arrows. Each variable or quantity in the model appears

as a node in the graph, and directed links correspond to direct dependencies as specified

above. The solid arrow denotes the probabilistic dependency, while dashed arrows indicate

functional or deterministic relationships. The rectangle designates observed data, and circles

represent unknown quantities. The model can be seen as directed because each link between

nodes is represented as an arrow. The model can also be seen as acyclic because it is

impossible to return to a node after leaving.

Insert Figure 2 about here

It may be helpful to use the following definitions: Let v be a node in the graph, and V

be the set of all nodes. A parent of v is defined as any node with an arrow extending from it

and pointing to v, and a descendant of v is defined as any node on a direct path beginning

from v. For identifying parents and descendants, deterministic links should be combined so

that, for example, the parent of Yij is P. It is assumed in Figure 2 for any node v, if we



know the value of its parents, then no other nodes would be informative concerning v except

descendants of v.

Lauritzen et al. (1990) indicated that, in a full probability model, the directed acyclic

graph model is equivalent to assuming that the joint distribution of all the random quantities

is fully specified in terms of the conditional distribution of each node given its parents. That

is,

P(V) = JJ P(v lparents[v]), (11)
vEV

where PO denotes a probability distribution. This factorization not only allows extremely

complex models to be built up from local components, but also provides an efficient basis

for the implementation of MCMC methods (Spiegelhalter, Best, et al., 1996).

Gibbs sampling via the BUGS computer program works by iteratively drawing samples

from the full conditional distributions of unobserved nodes in Figure 2 using the adaptive

rejection sampling algorithm (Gilks, 1996; Gilks & Wild, 1992). For any node v, the

remaining nodes are denoted by V v. It follows that the full conditional distribution,

P(v IV v), has the form

P(v1V v) a P(v, V v)

cx P(v I parent [v] ) II P(wlparents[w]) . (12)
wEchildren[v]

The proportionality constant, which is a function of the remaining nodes, ensures that the

distribution is a probability function that integrates to unity.

To analyze the LSAT6 data, we begin by specifying the forms of the parent and child

relationships in Figure 2. Under the 1PL model, the probability that examinee i responds

correctly to item j is assumed to follow a logistic function

exp(a9i, f3j) 1
P23 = (13)

1 + exp(a01 13j) 1 + exp[(ozOi

For scaling purposes, we may use the form

(14)

where 0: is the usual Rasch ability parameter and bj is the Rasch item difficulty parameter

defined as 9: = :a and bi = 133 #, where is the mean of the location parameters,

T3 = > i3j/n. Since Yij are Bernoulli with parameter Pij, we can define

Bernoulli(Pij) (15)



and
logit(Pii) = a9i fig. (16)

To complete the specification of a full probability model in for the BUGS computer

program, prior distributions of the nodes without parents (i.e., 9, fii, and a) also need to be

specified. We can define these priors in several different ways. We can impose priors on

and a using a hierarchical Bayes approach (e.g., Swaminathan & Gifford, 1982, 1985; Kim,

Cohen, Baker, Subkoviak, & Leonard, 1994). If it is preferred that the priors not be too

influential, uninformative priors could be imposed. Alternatively, it may also be useful to

include external information in the form of fairly informative prior distributions. According

to Spiegelhalter, Best, et al. (1996), it is important to avoid causal use of standard improper

priors in MCMC modeling, since these may result in improper posterior distributions.

Following Spiegelhalter, Thomas, et al. (1996), the uninformative prior distributions were

chosen for the LSAT6 analyses to make comparisons with other estimation methods. The

prior of was N(0, 1002) and the prior of a was N(0, 1002) with the range restriction,

a > 0, to yield only positive values of the Gibbs sampler for the slope parameter. The

prior distribution for a can be seen as a half normal distribution or the singly truncated

normal distribution (Johnson, Kotz, & Balakrishnan, 1994). These prior distributions were

similar to uninformative uniform distributions defined on the entire real line for /3i and on

the positive real number line for a. An example input file for BUGS is given in Appendix.

Starting Values

The choice of starting values (e.g., coM) is not generally that critical as the Gibbs sampler

should be run long enough to be sufficiently updated from its initial states. It is useful,

however, to perform a number of runs using different starting values to verify that the final

results are not sensitive to the choice of starting values (Gelman, 1996). Raftery (1996)

indicated that extreme starting values could lead to a very long burn-in or stabilization

process.

To check the sensitivity of the starting values, three separate runs were performed using

the LSAT6 data with three sets of starting values for pi, j = 1(1)5, and a. The three sets

of starting values are summarized in Table 2. The first run started at values considered

plausible in the light of the usual range of item parameters. The second run and the third

run represented substantial deviations in initial values. In particular, the second run was

10
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intended to represent a situation in which there was a possibility that items were difficult,

and the third run represented an opposite assumption.

Insert Table 2 about here

Each of the three runs consisted of 3,000 iterations. The results for th are presented in

Figure 3. The computer program CODA (Best, Cowles, & Vines, 1997) was used to obtain

these graphs. The plots in Figure 3 contain the graphical summaries of the Gibbs sampler

for th. The left plot shows the trace of the sampled values of j3 for the three runs. In the

legend, '0' indicates the initial values for 13i and a were 0 and 1, respectively; '5' indicates

the initial values were 5 and 5, respectively; and, '-5' indicates initial values were 5 and

.01, respectively. Results for all three runs show that the th generated by the Gibbs sampler

quickly settled down regardless of the starting values. The right graph shows the kernel

density plot of the three pooled runs of 9,000 values for th. The variability among the th

values generated by the Gibbs sampler seems not to be too great. The sampled values seem

to be concentrated around 2.5. The kernel density plot looks like a normal distribution.

Insert Figure 3 about here

The results for other item parameters were very similar to those from i3. Overall, the

starting values do not appear to affect the final results for the LSAT6 data. Useful starting

values for the Rasch model can be found in Molenaar (1995), Gustafsson (1977), and Wright

and Stone (1979). Also methods by Baker (1987), Jensema (1976), and Urry (1974) can be

used to obtain starting values. Use of good starting values, such as from the above methods,

can avoid the time delay required by a lengthy burn in. Our experience with these starting

values indicates /3.; = 0 and a = 1 will work sufficiently well for applications under the 1PL.

In subsequent analyses, therefore, the values, )3i = 0 and a = 1, were used as starting values

for LSAT6.

Output Monitoring

A critical issue for MCMC methods is how to determine when one can safely stop sampling

and use the results to estimate characteristics of the distributions of the parameters of

interest. In this regard, the values for the unknown quantities generated by the Gibbs
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sampler can be graphically and statistically summarized to check mixing and convergence.

The method proposed by Gelman and Rubin (1992) is one of the most popular for monitoring

Gibbs sampling. Cowles and Carlin (1996) presented a comparative review of convergence

diagnostics for the MCMC algorithms.

We illustrate, here, the use of Gelman and Rubin (1992) statistics on two 3,000 iteration

runs. Details of the Gelman and Rubin method are also given in Gelman (1996). Each 3,000

iteration run required about 50 minutes on a Pentium 90 megahertz computer. Monitoring

was done using the suite of S-functions called CODA (Best et al., 1997). Gelman-Rubin

statistics (i.e., shrink factors) are plotted on Figure 4 for /31, , /35, and a, respectively. For

all parameters, the medians were stabilized after about 1,000 iterations.

Insert Figure 4 about here

For each parameter, the Gelman-Rubin statistics estimate the reduction in the pooled

estimate of variance if the runs were continued indefinitely. The Gelman-Rubin statistics

can be calculated sequentially as the runs proceed. The Gelman-Rubin statistics should be

near 1 in order to be reasonably assured that convergence has occurred. Table 3 contains

the Gelman-Rubin statistics for LSAT6. The median for /31, for example, was 1.00 and the

97.5 percentage point was 1.01. The median for a was 1.00 and the 97.5 percentage point

was 1.02. These values were very close to 1 indicating that reasonable convergence was

realized for all parameters. It is important to notice that the results in Table 3 and the plots

in Figure 4 suggest the first 1,000 iterations of each run be discarded and the remaining

samples be pooled. We used 1,000 iterations as burn-in and the subsequent 2,000 iterations

for the estimation purpose.

Insert Table 3 about here

Item Parameter Estimates

The last step of Gibbs sampling is to obtain summary statistics for the quantities of interest.

The posterior mean of the Gibbs sampler can be obtained for each item parameter. The

posterior interval as well as the posterior standard deviation can also be obtained for each

item parameter from the results of Gibbs sampling. In order to compare item parameter



estimates of the LSAT6 items, data were first analyzed via the computer program BUGS

(Spiegelhalter et al., 1997) for Gibbs sampling using uninformative prior distributions for

item parameters, i3j N(0, 1002) and a N(0, 1002) with a > 0. The starting values of

the Gibbs sampler were fij = 0 and a = 1. There were the first 1,000 burn-in iterations.

The subsequent 2,000. iterations were used to obtain posterior means and intervals of the

item parameters. All of these were, of course, based on the results of the previous analyses

presented earlier in this section. The trace lines of the sampled values and the kernel density

plots for LSAT6 item parameters bj, j = 1(1)5, and a are presented in Figure 5. All of the

kernel density plots seem to follow the normal distributions.

Insert Figure 5 about here

Table 4 contains the Rasch item parameter estimates (i.e., posterior means for Gibbs

sampling) and the 95% posterior intervals for the LSAT6 items. Table 4 also contains the

item parameter estimates of the LSAT6 items from the methods of CML, MML, and JML

using the computer programs PML (Molenaar, 1990), BILOG (Mislevy 8z Bock, 1990), and

BIGSCALE (Wright, Linacre, Sz Schultz, 1989), respectively. All default options were used

in running the programs. Note that the item parameter estimates from BILOG under MML

were initially expressed in terms of the posterior ability metric. The item parameter estimates

were transformed onto the usual Rasch model metric (i.e., the metric of either CML or JML

with the restriction, Ei bj = 0) in order to make the comparison possible.

All in all the item parameter estimates are the same. We also obtained correlations

and root mean squared differences between sets of estimates for domparison purposes (see

Table 5). The differences occurred mostly in the second or third decimal places. Considering

the sizes of the confidence and posterior intervals of the estimates, there seem to be no

practical differences in using the item parameter estimates for applications. In terms of

confidence intervals, both MML and CML yielded relatively wider intervals than either

Gibbs sampling or JML did.

Insert Tables 4 and 5 about here



Ability Parameter Estimates

The Rasch ability estimates and the posterior intervals of the LSAT6 data are reported

in Table 6. It is important to notice that Gibbs sampling might yield different posterior

means for examinees who have the same response pattern. For example, there were three

examinees with the response pattern (0, 0, 0, 0, 1) for LSAT6. If we obtain the posterior

means for the three examinees, the values will be different (but obviously very similar). In

this sense, estimates of the ability parameter from the Gibbs sampling are not unique if we

try to obtain them jointly with item parameters. The ability estimates and the posterior

intervals reported in Table 5 are, in fact, the average values based on the same raw scores.

Insert Tables 6 and 7 about here

The ability estimates from the methods of CML, MML, and JML can also be found in

Table 6. Under MML, ability parameters are estimated after obtaining item parameter

estimates and assuming the estimates are the true values. Three estimation methods,

maximum likelihood (ML), expected a posteriori (EAP), and maximum a posteriori (MAP),

can be used to obtain ability parameter estimates. Since the EAP methods is default in

BILOG and since under CML and JML the ability estimates are based on the method of

maximum likelihood, both EAP and ML methods were employed under MML. Note that

the ability estimates were expressed in the same metric of the item parameter estimates.

In Table 7 it can be noticed that ability estimates from Gibbs sampling and EAP are

about the same as both were based on the normal prior (i.e., Bayes methods). CML,

MML/ML, and JML yielded very similar ability estimates. Especially, ability estimates

and the confidence intervals from CML and MML/ML seem to be more similar each other

than those from JML. Clearly, the Bayes ability estimates from both Gibbs sampling and

EAP were different from those based on the maximum likelihood methods.

Example 2

Preliminary Analyses

The second example is based on the Memory Test data from Thissen (1982) (see Table 8).

The Memory Test data contained 40 examinees responses to the ten items. This example

may represent a situation where a small number of examinees' responses to a smaller number



of items are to be analyzed under the Rasch model. Model parameters were estimated by

Gibbs sampling using the computer program BUGS (Spiegelhalter et al., 1997) under the

1PL model with the same sets of the prior distributions used in the LSAT6 analyses. That

is, O e N(0, 1), 13i N(0, 1002), and a rs, N(0, 1002) with a > 0.

Insert Table 8 about here

To check the sensitivity of the starting values for the Memory Test data, three separate

runs were performed with three sets of starting values as in Table 2 for /3i, j = 1(1)10, and

a. The three sets of starting values reflected such situations as we have items matched with

ability, we have difficult items, and we have easy items, respectively. Each of the three runs

consisted of 3,000 iterations.

The results for 01 are presented in Figure 6. The left plot shows the trace of the sampled

values of 01 from the three runs. Results for all three runs indicated that the 01 generated

by the Gibbs sampler quickly settled down without any visible dependency on the starting

values. The right graph shows the kernel density plot of the three pooled runs of 9,000

values for Variability among the th values generated by the Gibbs sampler was very

large, and it might reflect the fact that only 40 examinees were used to estimate parameters.

The sampled values were concentrated around 1.5. The distribution did not reveal any

bimodality or trimodality. The kernel density seemed to be a normal distribution indicating

all three runs yielded similar sets of generated values that equally represented the underlying

parameter 131.

Insert Figure 6 about here

The results for other item parameters were almost the same as those for th. Overall the

starting values do not appear to affect the final results for the Memory Test. In subsequent

analyses for the Memory Test, therefore, Ai = 0 and a = 1 were used as starting values.

The Gelman and Rubin (1992) statistics on two separate 3,000 iteration runs with

different random number seeds were used to check mixing and convergence. Gelman-Rubin

statistics are plotted on Figure 7 for ,tho, and a, respectively. In general, the medians

were stabilized after about 1,000 iterations for all parameters.
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Insert Figure 7 and Table 9 about here

Table 9 contains the Gelman-Rubin statistics of the Memory test. The median for a

was 1.00 and the 97.5 percentage point was 1.02. The medians and the 97.5 percentage

points for all /3.; were 1.00. Reasonable convergence was achieved for all parameters. Note

that Figure 7 suggests the first 1,000 iterations of each run be removed and the remaining

samples be pooled. The first 1,000 iterations were treated as burn-in and the subsequent

2,000 iterations were used for making inferences.

Item Parameter Estimates

In order to compare item parameter estimates of the Memory Test, data were analyzed

via the computer program BUGS (Spiegelhalter et al., 1997) for Gibbs sampling using

the uninformative prior distributions for item parameters. Again iej N(0, 1002) and

a ", N(0, 1002) with a > 0 were used as priors. The starting values for Gibbs sampling

were f3i = 0 and a = 1. The last 2,000 iterations were used to obtain posterior means and

posterior intervals of the item parameters. The trace lines of the sampled values and the

kernel density plots for the Memory Test items parameters are presented in Figure 8. All of

the kernel density plots seemed to follow the normal distributions.

Insert Figure 8 and Tables 10 and 11 about here

Table 10 contains the Rasch item parameter estimates and the 95% confidence and

posterior intervals for the Memory Test items. Item parameter estimates were expressed

in terms of the usual Rasch model metric. The item parameter estimates were very similar

(see Table 11). The difference occurred mostly in the second decimal places and, sometimes,

in the first decimal places. It can be noticed that the sizes of the confidence and posterior

intervals were very large. This might not be surprising because there were only 40 examinees

in the data. No practical differences, however, may occur in using these item parameter

estimates. In terms of confidence intervals, MML and CML yielded relatively wider intervals

than did the other two methods.
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Ability Parameter Estimates

The Rasch ability estimates and the confidence and posterior intervals of the Memory Test

data are reported in Table 12. Note that most of ability estimates and the posterior intervals

from Gibbs sampling reported in Table 12 were the average values based on the same raw

scores. The ability estimates from Gibbs sampling and EAP were very similar (see Table 13).

CML, MML/ML, and JML yielded \-Tery similar ability estimates. The ability estimates and

the confidence intervals from CML and MML/ML seemed to be more similar each other than

those from JML. The Bayes ability estimates from Gibbs sampling and EAP were different

from those based on the maximum likelihood methods.

Insert Tables 12 and 13 about here

Example 3

Preliminary Analyses

The third example used data from Patz and Junker (1997). The data consisted of 3,000

examinees' responses to six short constructed-response items from the 1992 Trial State

Assessment in Reading of the National Assessment of Educational Progress (NAEP).

According to Patz and Junker (1997), the sample of 3,000 examinees could be considered

as a representative random sample of the population of the fourth grade students in the

United States. The data provided a situation where a relatively short test was calibrated

using a large number of examinees. Item response patterns of the six NAEP items and the

numbers of examinees for the respective response patterns are displayed in Table 15. All 64

possible patterns were observed. The calibration was performed using BUGS (Spiegelhalter

et al., 1997) under the 1PL. Prior distributions employed in calibration were Oi N(0, 1),

N(0, 1002), and a N(0, 1002) with a > 0. It was expected that the relatively large

sample size of the data would yield item parameter estimates that were not sensitive to the

prior specifications because of the dominant effect of the likelihood in the posterior.

Insert Table 14 about here

Before making comparisons of calibration results, the effect of the starting values on the

final parameter estimates was investigated for the NAEP data using three sets of starting



values as in Table 2. Each of the three runs consisted of 3,000 iterations. Figure 9 illustrates

the convergence results of 01 based on the three calibration runs. Each of the 3,000 iterations

yielded very similar results. Regardless of starting values, the trace lines from the left plot

were stabilized after just a few iterations. The kernel density plot of the combined 9,000

sampled values of /31 is also presented in Figure 9. The kernel density plot shows all three

starting values yielded the same pattern of sampled values. The density plot seems to follow

a normal distribution. The results from other item parameters were very similar to the

results of /31. Overall the starting values did not appear to affect the final results for the

NAEP items. The starting values, 0.; = 0 and a = 1, were used in the analyses.

Insert Figure 9 about here

In order to check mixing and convergence, Gelman and Rubin (1992) statistics were

obtained from the two separate 3,000 iteration runs. Gelman-Rubin statistics are plotted

in Figure 10. The medians were stabilized after about 1,000 iterations for all parameters.

Hence, the first 1,000 iterations were treated as burn-in and the subsequent 2,000 iterations

were used for estimating.

Insert Figure 10 and Table 15 about here

The Gelman-Rubin statistics for the parameters of the six NAEP items are presented in

Table 15. The median for a was 1.00 and the 97.5 percentage point was 1.01. The medians

for all f3 were 1.00. Three Ai yielded the 97.5 percentage points of 1.00. Two )3.; (i.e., 03

and 05) yielded the 97.5 percentage points of 1.01. Reasonable convergence was realized for

all parameters.

Item Parameter Estimates

In order to compare item parameter estimates of the NAEP items, data were analyzed via the

computer program BUGS (Spiegelhalter et al., 1997) for Gibbs sampling using uninformative

prior distributions for item parameters. The priors were f3i N(0, 1002) and a N(0, 1002)

with a > 0. The starting values for Gibbs sampling were pi = 0 and a = 1. The last 2,000

iterations were used to obtain posterior means and posterior intervals of the item parameters.
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The trace lines of the sampled values and the kernel density plots for the six NAEP items are

presented in Figure 11. All of the kernel density plots seem to follow normal distributions.

Insert Figure 11 and Tables 16 and 17 about here

Table 16 contains the Rasch item parameter estimates and the 95% confidence and

posterior intervals for the NAEP items from Gibbs sampling, CML, MML, and JML. Item

parameter estimates were expressed in terms of the usual Rasch model metric. All four

methods yielded almost the same item parameter estimates (see also Table 17). Gibbs

sampling and MML yielded an identical set of item parameter estimates. The differences

among item parameter estimates across estimation methods occurred mostly in the second

decimal places. Gibbs sampling yielded relatively shorter posterior intervals than the other

methods. The confidence and posterior intervals of the estimates were very short reflecting

the fact that a total of 3,000 examinees were used to calibrate items. MML and CML yielded

relatively wider confidence intervals than did the other two methods.

Ability Parameter Estimates

The Rasch ability estimates and the confidence and posterior intervals of the NAEP data are

reported in Table 18. Note that the ability estimates and the posterior intervals for Gibbs

sampling reported in Table 18 are the average values based on the same raw scores. The

ability estimates from Gibbs sampling and EAP were very similar (see Table 19). CML,

MML/ML, and JML yielded also very similar ability estimates. Among the maximum

likelihood methods, the results from CML and MML/ML were more similar each other

than those from JML. JML yielded relatively wider confidence intervals. Gibbs sampling

yielded wider posterior intervals than EAP did except for scores 0 and 6. The Bayes ability

estimates from Gibbs sampling and EAP were obviously quite different from those obtained

from the other three mmimum likelihood methods.

Insert Tables 18 and 19 about here
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Example 4
Preliminary Analyses

The last Example represented a typical data set for 1PL that contained item responses

from 365 examinees for the 31-item English Usage Test. The 1PL model with the prior

distributions, Oi N(0, 1), Ai N(0, 1002), and a N(0, 1002) with a > 0, 'was used in

Gibbs sampling to estimate item and ability parameters.

To check the sensitivity of the starting values for the Usage Test data, three separate runs

were performed with three sets of starting values for i3j, j = 1(1)31, and a, that were used in

the previous Examples (see Table 2). The first starting values reflected a plausible set in the

light of the usual range of item parameters. The second set represented a situation we have

difficult items. The third implied that we have easy items. Each of the three runs consisted

of 3,000 iterations. The results for /31 are presented in Figure 12. The left plot shows that

trace lines of the sampled values of 01 for the three runs. The values of th generated by the

Gibbs sampler quickly settled down without having any visible effects of the starting values.

The right graph shows the kernel density plot of the three pooled runs of 9,000 values of /31.

The shape of the kernel density was that of a normal distribution indicating all three runs

yielded vary comparable sets that equally represented the underlying parameter th.

Insert Figure 12 about here

As the starting values did not appear to affect the final results for the Usage Test, the

starting values, Oi = 0 and a = 1, were used in the analyses. In addition, based on the

results from the earlier Examples, the first 1,000 iterations were treated as burn-in and the

next 2,000 iterations were used to obtain the posterior means and the posterior intervals of

the item and ability parameters for Gibbs sampling.

Item Parameter Estimates

Table 20 contains the Rasch item parameter estimates and the 95% confidence and posterior

intervals for the Usage Test items. Item parameter estimates were expressed in terms of

the usual Rasch model metric. All item parameter estimates were very similar (see also

Table 21). The differences among estimates occurred mostly in the second decimal places.

In terms of confidence intervals, MML and CML yielded relatively wider intervals than the

other two methods did.
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Insert Tables 20 and 21 about here

Ability Parameter Estimates

The Rasch ability estimates and the confidence and posterior intervals of the Usage Test

are reported in Table 22. Note that the ability estimates and the posterior intervals of

Gibbs sampling reported were the average values based on the same raw scores. The ability

estimates from Gibbs sampling and EAP were very similar (see Table 23). CML, MML/ML,

and JML yielded very similar ability estimates. Bayes ability estimates from Gibbs sampling

and EAP were clearly different from those obtained from the maximum likelihood methods.

Insert Tables 22 and 23 about here

Discussion

Previous work with the MCMC method using Gibbs sampling suggests this method may

provide a useful alternative method for estimation when small sample sizes and small

numbers of items are used. Even though implementation of the Gibbs sampling method

in IRT is available in several computer programs, the accuracy of the resulting estimates

have not been thoroughly studied. More simulation results should be reported.

The main difference between the Gibbs sampling method and the other estimation

methods lies in the way these methods obtain parameter estimates. The Gibbs sampling

method uses the sample of parameter values to estimate the mean and variance of the

posterior density of the parameter. Under CML and MML, the conditional likelihood

function and the marginalized likelihood function are maximized to obtain modes of item

parameters. Estimates of the ability parameters do not arise during the course of item

parameter estimation under CML and MML. Instead, ability parameters are typically

estimated after obtaining the item parameter estimates, assuming the obtained estimates

are true values. For the Gibbs sampling method, ability parameters can be estimated jointly

with item parameters, similar, in this sense, to JML or joint Bayesian. It is important to

know that the ability parameters can also be estimated in Gibbs sampling after obtaining

item parameter estimates as in CML or MML, assuming the estimates are true values.



In the above context, one other difference between Gibbs sampling and the other

estimation methods is that persons with the same response pattern may produce different

ability estimates under Gibbs sampling. Clearly, it is not acceptable. Note that this will

occur in a usual case of Gibbs sampling where both item and ability parameters are obtained

jointly. We may perform Gibbs sampling initially only to estimate item parameters. After

obtaining item parameter estimates, ability parameters can be obtained using a maximum

likelihood or Bayesian method. It will remove such an awkward situation where examinees

with the same response pattern have different ability estimates.

The estimation of item and ability parameters using Gibbs sampling requires a
considerable amount of computing time. This was particularly true for the computer program

BUGS used in this study. For example, as noted earlier, one computer run forGibbs sampling

using the LSAT6 data took about 50 minutes, whereas each of the other three estimation

methods, MML, CML, and JML, took definitely less than a minute. The computer programs

for MML, CML, and JML used in this study are extremely efficient, of course, in comparison

to BUGS. One alternative solution may be implementing the Gibbs sampling method using

lower level computer languages (e.g., FORTRAN or C++). The iterative nature of Gibbs

sampling, however, may prohibit us from seeing a noticeable reduction of computing time.

The Gibbs sampling and general MCMC methods are likely to be more useful for

situations where complicated models are employed. For example, Gibbs sampling can be

applicable to the estimation of item and ability parameters in the hierarchical Bayes approach

(Mislevy, 1986; Swaminathan & Gifford, 1982, 1985, 1986). In this study the priors were

imposed directly on the parameters. Accuracy of the Gibbs sampling method with different

kinds of priors, perhaps more informative in a Bayesian sense, should be investigated. This

kind of research may be particularly valuable for small samples and short tests.

One of the possible advantages of using Gibbs sampling or general MCMC methods, and

something to consider in future research on these methods, is incorporation of uncertainly

in item parameter estimates into estimation of ability parameters (e.g. Patz & Junker, 1997;

Tsutakawa & Johnson, 1990). The data sets used in the four Examples did not clearly exhibit

any pronounced effects of errors in item parameter estimates on the ability estimates. This

type of investigation can be performed in the context of simulation (e.g., Hu lin, Lissak, &

Drasgow, 1982). Additional simulation studies may reveal whether such incorporation is, in

fact, valuable in the context of the Rasch model.
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In this paper, The Rasch model was used without addressing the problem of model

selection and criticism (e.g., the choice of the linking function, model fit). The model criticism

for Gibbs sampling seems to be an important topic to investigate in future research. Also the

evaluation of the Gibbs sampling method to other IRT models, for example, other logistic

or probit models for binary items, the partial credit model, the graded response model, and

the linear logistic test model, may provide guidelines for using the method under IRT.

Finally, it should be noted that the computer programs BUGS (Spiegelhalter et al., 1997)

and CODA (Best et al., 1997) as well as the accompanying manuals are freely available over

the Web. The uniform resource locator (URL) of the Medical Research Council Biostatistics

Unit at the University of Cambridge is:

http://www.mrc-bsu.cam.ac.uk/bugs/
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Table 1
LSAT6 Data of Bock and Lieberman (1970) with 32 Response Patterns

Item Pattern Observed
Index 1 2 3 4 5 Freugency

1 0 0 0 0 0 3
2 0 0 0 0 1 6
3 0 0 0 1 0 2

4 0 0 0 1 1 11

5 0 0 1 0 0 1

6 0 0 1 0 1 1

7 0 0 1 1 0 3

8 0 0 1 1 1 4
9 0 1 0 0 0 1

10 0 1 0 0 1 8
11 0 1 0 1 0 0
12 0 1 0 1 1 16
13 0 1 1 0 0 0
14 0 1 1 0 1 3

15 0 1 1 1 0 2
16 0 1 1 1 1 15
17 1 0 0 0 0 10
18 1 0 0 0 1 29
19 1 0 0 1 0 14
20 1 0 0 1 1 81
21 1 0 1 0 0 3
22 1 0 1 0 1 28
23 1 0 1 1 0 15
24 1 0 1 1 1 80
25 1 1 0 0 0 16
26 1 1 0 0 1 56
27 1 1 0 1 0 21
28 1 1 0 1 1 173
29 1 1 1 0 0 11

30 1 1 1 0 1 61
31 1 1 1 1 0 28
32 1 1 1 1 1 298

Table 2
Starting Values for Item Parameters in the

Three Runs of the Gibbs Sampler

Run
Parameter First Second Third
fli, j = 1(1)5 0 5 5
a 1 5 .01

Table 3
Gelman-Rubin Statistics for the Parameters of the LSAT6 Items

Shrink Factor
Parameter Estimate 97.5 Percentile

fii 1.00 1.01

02 1.00 1.01

133 1.00 1.01

/34 1.00 1.01

135 1.00 1.01
a 1.00 1.02

BEST COPY AVAILABLE 0 1
0 1.



Table 4
Estimated Item Parameters and 95% Confidence/Posterior Intervals of the LSAT6 Items from Gibbs Sampling,

Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Item
Gibbs Samplinga CML mmLa JML

Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval
1 -1.26 (-1.47, -1.05) -1.26 (-1.49, -1.02) -1.26 (-1.51, -1.00) -1.24 (-1.46, -1.02)
2 .48 (.34, .62) .47 (.31, .64) .48 (.32, .63) .45 (.31, .59)
3 1.24 (1.11, 1.37) 1.24 (1.08, 1.40) 1.24 (1.09, 1.38) 1.30 (1.16, 1.44)
4 .17 (.02, .31) .17 (.00, .34) .17 (.00, .34) .13 (-.01, .27)
5 -.63 (-.79, -.47) -.62 (-.82, -.43) -.62 (-.83, -.42) -.64 (-.80, -.48)

aThe restriction, Eibi = 0, has been applied.

Table 5
Correlations (Lower Triangle) and Root Mean Squared Differences (Upper Triangle) of the LSAT6

Item Parameter Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML),
Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling CML MML JML
Gibbs Sampling .006 .004 .036

CML 1.000 .004 .036
MML 1.000 1.000 .037
JML .999 .999 .999

Table 6
Ability Estimates and 95% Confidence/Posterior Intervals of the LSAT6 Data from Gibbs Sampling, Conditional Maximum Likelihood (CML),
Marginal Maxium Likelihood (MML) with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Score
Gibbs Sampling° CML

MML
JMLML EAP

Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval
0 .02 (-1.15, 1.18) .03 (-1.14, 1.21)
1 .39 (-.79, 1.60) -1.60 (-3.92, .71) -1.55 (0.0, ...b) .40 (-.78, 1.58) -1.72 (-4.08, .65)
2 .76 (-.42, 1.98) -.47 (-2.41, 1.47) -.47 (-2.41, 1.47) .76 (-.43, 1.96) -.52 (-2.54, 1.50)
3 1.15 (-.06, 2.39) .48 (-1.45, 2.42) .48' (-1.45, 2.41) 1.14 (-.07, 2.36) .52 (-1.50, 2.54)
4 1.54 (.31, 2.81) 1.60 (-.71, 3.91) 1.60 (-.71, 3.91) 1.54 (.29, 2.78) 1.72 (-.65, 4.09)
5 1.96 (.69, 3.26) 1.95 (.67, 3.23)

The restriction, Ejbj = 0, has been applied.
b Improper values were obtained.

Table 7
Correlations (Lower Triangle) and Root Mean Squared Differences (Upper Triangle) of the LSAT6 Ability

Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML)
with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling
MML

JMLCML ML EAP
Gibbs Sampling 1.217 1.197 .008 1.277

CML .999 .025 1.220 .091
MML/ML .927 .941 1.199 .109

MML/EAP 1.000 .999 .926 1.280
JML .999 1.000 .939 .999
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Table 8
Ten-Item Memory Test Data from Thissen (1982) with 31 Response Patterns

Item Pattern Observed
Index 1 2 3 4 5 6 7 8 9 10 Freuciency

1 0 0 0 0 0 0 0 0 0 0 5

2 0 0 0 0 0 0 0 0 0 1 1

3 0 0 0 0 0 0 0 0 1 1 3

4 0 0 0 0 0 0 0 1 0 1 2

5 0 0 0 0 0 1 0 0 0 1 1

6 0 0 0 0 1 0 0 0 0 1 1

7 0 0 0 0 1 0 0 0 1 0 1

8 0 0 1 0 0 0 0 0 0 1 1

9 0 0 0 0 0 0 0 1 1 1 2

10 0 0 0 0 0 0 1 0 1 1 1

11 0 0 1 0 0 0 0 1 0 1 1

12 0 0 1 0 0 0 1 0 0 1 1

13 0 1 0 0 0 1 0 1 0 0 1

14 1 0 0 0 0 0 0 0 1 1 1

15 1 0 0 0 0 0 1 0 0 1 1

16 1 0 0 1 0 0 0 0 1 0 1

17 0 0 0 0 0 0 1 1 1 1 1

18 0 0 0 0 0 1 0 1 1 1 2

19 0 0 0 0 1 0 1 0 1 1 1

20 0 0 0 1 0 0 1 0 1 1 1

21 0 0 0 1 0 0 1 1 0 1 1

22 0 1 0 0 0 0 0 1 1 1 1

23 0 1 0 0 0 1 0 0 1 1 1

24 0 1 0 0 1 0 0 1 1 0 1

25 0 1 0 0 0 0 1 1 1 1 1

26 1 0 0 0 0 1 1 1 0 1 1

27 1 0 0 1 1 0 1 1 0 0 1

28 1 1 0 0 1 0 0 1 0 1 1

29 0 1 0 0 0 1 1 1 1 1 1

30 1 1 0 0 1 1 0 1 0 1 1

31 0 1 1 1 1 0 0 1 1 1

Table 9
Gelman-Rubin Statistics for the Parameters of the Memory Test Items

Shrink Factor
Parameter Estimate 97.5 Percentile

/31 1.00 1.00

132 1.00 1.00

P3 1.00 1.00

i34 1.00 1.00

P5 1.00 1.00

/36 1.00 1.00

/37 1.00 1.00

08 1.00 1.00
P9 1.00 1.00

PIO 1.00 1.00
a 1.00 1.02
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Table 10
Estimated Item Parameters and 95% Confidence/Posterior Intervals of the Memory Test Items from Gibbs Sampling,
Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Item
Gibbs Samplinga CML MMLa JML

Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval
1 .70 (-.08, 1.51) .66 (-.19, 1.51) .65 (-.37, 1.67) .68 (-.10, 1.46)
2 .31 (-.40, 1.09) .33 (-.46, 1.12) .31 (-.67, 1.30) .35 (-.38, 1.08)
3 1.44 (.51, 2.61) 1.33 (.30, 2.36) 1.34 (.08, 2.60) 1.34 (.36, 2.32)
4 1.12 (.21, 2.11) 1.07 (.12, 2.02) 1.07 (-.05, 2.20) 1.09 (.19, 1.99)
5 .50 (-.25, 1.33) .49 (-.33, 1.31) .47 (-.48, 1.43) .51 (-.23, 1.25)
6 .49 (-.25, 1.28) .49 (-.33, 1.31) .47 (-.50, 1.45) .51 (-.23, 1.25)
7 .01 (-.68, .73) .05 (-.71, .80) .02 (-.82, .85) .06 (-.63, .75)
8 -1.01 (-1.68, -.34) -.91 (-1.62, -.20) -.96 (-1.75, -.16) -.93 (-1.58, -.28)
9 -1.13 (-1.79, -.44) -1.02 (-1.74, -.31) -1.07 (-1.93, -.21) -1.05 (-1.70, -.40)

10 -2.43 (-3.26, -1.69) -2.49 (-3.38, -1.59) -2.31 (-3.25, -1.36) -2.58 (-3.46, -1.70)
aThe restriction, E2b = 0, has been applied.

Table 11
Correlations (Lower Triangle) and Root Mean Squared Differences (Upper Triangle) of the Memory Test

Item Parameter Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML),
Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling CML MML JML
Gibbs Sampling .066 .061 .072

CML .999 .063 .034
MML 1.000 .999 .090
JML .998 1.000 .998

Table 12
Ability Estimates and 95% Confidence/Posterior Intervals of the Memory Test Data from Gibbs Sampling, Conditional Maximum Likelihood (CML),

Marginal Maxium Likelihood (MML) with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Score
Gibbs Sampling° CML

MML°
JMLML EAP

Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval
o -2.24 (-3.63, -.89) -2.05 (-3.23, -.88)
1 -1.84 (-3.17, -.58) -2.71 (-4.98, -.44) -2.67 (-4.91, -.44) -1.70 (-2.84, -.56) -2.78 (-5.05, -.51)
2 -1.47 (-2.74, -.23) -1.69 (-3.45, .06) -1.69 (-3.42, .05) -1.37 (-2.48, -.27) -1.72 (-3.48, .04)
3 -1.11 (-2.33, .07) -1.00 (-2.54, .54) -1.00 (-2.53, .52) -1.06 (-2.14, .02) -.99 (-2.54, .56)
4 -.78 (-2.01, .39) -.43 (-1.86, 1.00) -.44 (-1.86, .98) -.76 (-1.82, .30) -.41 (-1.84, 1.02)
5 -.46 (-1.68, .71) .08 (-1.30, 1.45) .06 (-1.31, 1.44) -.48 (-1.52, .57) .11 (-1.26, 1.48)
6 -.15 (-1.31, .99) .57 (-.81, 1.95) .56 (-.83, 1.94) -.20 (-1.23, .83) .60 (-.77, 1.97)
7 .17 (-.99, 1.35) 1.09 (-.36, 2.53) 1.07 (-.38, 2.52) .08 (-.95, 1.10) 1.12 (-.31, 2.55)

'The restriction, Eibj = 0, has been applied.

Table 13
Correlations (Lower Triangle) and Root Mean Squared Differences (Upper 7hangle) of the Memory Test Ability
Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML)

with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling
MML

JMLCML ML EAP
Gibbs Sampling .609 .592 .100 .642

CML .995 .019 .672 .036
MML/ML .995 1.000 .654 .054

MML/EAP 1.000 .994 .995 .223
JML .994 1.000 1.000 .993
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Table 14
NAEP Data in Patz and Junker (1997) with 64 Response Patterns

Item Pattern Observed Item Pattern Observed
Index 1 2 3 4 5 6 Frequency Index 1 2 3 4 5 6 Freutiency

1 0 0 0 0 0 0 145 33 1 0 0 0 0 0 13
2 0 0 0 0 0 1 44 34 1 0 0 0 0 1 8
3 0 0 0 0 1 0 49 *35 1 0 0 0 1 0 7
4 0 0 0 0 1 1 16 36 1 0 0 0 1 1 5
5 0 0 0 1 0 0 13 37 1 0 0 1 0 0 4
6 0 0 0 1 0 1 2 38 1 0 0 1 '0 1 1

7 0 0 0 1 1 0 17 39 1 0 0 1 1 0 3
8 0 0 0 1 1 1 6 40 1 0 0 1 1 1 5
9 0 0 1 0 0 0 141 41 1 0 1 0 0 0 22

10 0 0 1 0 0 1 49 42 1 0 1 0 0 1 9
11 0 0 1 0 1 0 79 43 1 0 1 0 1 0 20
12 0 0 1 0 1 1 45 44 1 0 1 0 1 1 16
13 0 0 1 1 0 0 22 45 1 0 1 1 0 0 3
14 0 0 1 1 0 1 14 46 1 0 1 1 0 1 1

15 0 0 1 1 1 0 21 47 1 0 1 1 1 0 10
16 0 0 1 1 1 1 18 48 1 0 1 1 1 1 11
17 0 1 0 0 0 0 157 49 1 1 0 0 0 0 34
18 0 1 0 0 0 1 47 50 1 1 0 0 0 1 16
19 0 1 0 0 1 0 104 51 1 1 0 0 1 0 36
20 0 1 0 0 1 1 65 52 1 1 0 0 1 1 33
21 0 1 0 1 0 0 37 53 1 1 0 1 0 0 6
22 0 1 0 1 0 1 28 54 1 1 0 1 0 1 3
23 0 1 0 1 1 0 32 55 1 1 0 1 1 0 20
24 0 1 0 1 1 1 40 56 1 1 0 1 1 1 30
25 0 1 1 0 0 0 265 57 1 1 1 0 0 0 40
26 0 1 1 0 0 1 106 58 1 1 1 0 0 1 33
27 0 1 1 0 1 0 202 59 1 1 1 0 1 0 60
28 0 1 1 0 1 1 177 60 1 1 1 0 1 1 98
29 0 1 1 1 0 0 64 61 1 1 1 1 0 0 19
30 0 1 1 1 0 1 46 62 1 1 1 1 0 1 26
31 0 1 1 1 1 0 107 63 1 1 1 1 1 0 50
32 0 1 1 1 1 1 93 64 1 1 1 1 1 1 107

Table 15
Gelman-Rubin Statistics for the Parameters of the NAEP Items

Shrink Factor
Parameter Estimate 97.5 Percentile

Qi 1.00 1.00
132 1.00 1.00
Qs 1.00 1.01
04 1.00 1.00
)35 1.00 1.01
136 1.00 1.00
a 1.00 1.01
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Table 16
Estimated Item Parameters and 95% Confidence/Posterior Intervals of the NAEP Items from Gibbs Sampling,

Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Item
Gibbs Samplinga CML MMLa JML

Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval
1 1.14 (1.07, 1.23) 1.15 (1.05, 1.24) 1.14 (1.05, 1.24) 1.13 (1.05, 1.24)
2 -1.27 (-1.34, -1.19) -1.26 (-1.35, -1.17) -1.27 (-1.36, -1.17) -1.25 (-1.33, -1.17)
3 -.89 (-.97, -.82) -.89 (-.98, -.81) -.89 (-.98, -.81) -.88 (-.96, -.81)
4 .93 (.85, 1.00) .93 (.84, 1.02) .93 (.84, 1.02) .92 (.84, 1.00)
5 -.26 (-.33, -.19) -.26 (-.35, -.18) -.26 (-.34, -.17) -.25 (-.33, -.17)
6 .35 (.28, .42) .34 (.26, .43) .35 (.26, .43) .34 (.26, .42)

aThe restriction, E3b2 = 0, has been applied.

Table 17
Correlations (Lower Triangle) and Root Mean Squared Differences (Upper Triangle) of the NAEP

Item Parameter Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML),
Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling CML MML JML
Gibbs Sampling .007 .000 .012

CML 1.000 .007 .011
MML 1.000 1.000 .012
JML 1.000 1.000 1.000

Table. 18
Ability Estimates and 95% Confidence/Posterior Interval., of the NAEP Data from Gibbs Sampling, Conditional Maximum Likelihood (CML),

Marginal Maxium Likelihood (MML) with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Score
Gibbs Sampling° CML

MML
JMLML EAP

Ability Conf. Interval Ability Conf. Interval AbilTiT Conf. Interval Ability Conf. Interval Ability Conf. Interval
o -1.29 (-2.65, -.03) -1.33 (-2.65, -.01)
1 -.88 (-2.20, .40) -1.86 (-4.12, .39) -1.87 (-4.12, .39) -.89 (-2.17, .39) -1.96 (-4.25, .33)
2 -.49 (-1.77, .75) -.82 (-2.66, 1.02) -.82 (-2.66, 1.02) -.47 (-1.73, .78) -.87 (-2.77, 1.03)
3 -.06 (-1.44, 1.17) .01 (-1.75, 1.76) .01 (-1.75, 1.76) -.07 (-1.31, 1.18) .01 (-1.79, 1.81)
4 .35 (-.92, 1.64) .83 (-1.01, 2.66) .83 (-1.01, 2.66) .34 (-.91, 1.59) .88 (-1.00, 2.76)
5 .74 (-.56, 2.07) 1.86 (-.38, 4.10) 1.86 (-.38, 4.11) .75 (-.52, 2.02) 1.96 (-.31, 4.23)
6 1.18 (-.07, 2.45) 1.18 (-.12, 2.48)

aThe restriction, Ejbj = 0, has been applied.

Table 19
Correlations (Lower Triangle) and Root Mean Squared Differences (Upper Triangle) of the NAEP Ability

Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML)
with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling
MML

JMLCML ML EAP
Gibbs Sampling .715 .718 .018 .785

CML .998 .004 .713 .071
MML/ML .998 1.000 .716 .068

MML/EAP 1.000 .999 .999 .783
JML .998 1.000 1.000 .999

BEST COPY AVAILABLE

26



Table 20
Estimated Item Parameters and 95% Confidence/Posterior Intervals of the English Usage Items from Gibbs Sampling,
Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Item
Gibbs Samplinga CML MMLa JML

Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval Difficulty Conf. Interval
1 -2.67 (-3.12, -2.24) -2.68 (-3.13, -2.23) -2.65 (-3.13, -2.17) -2.68 (-3.13, -2.23)
2 1.15 (.92, 1.38) 1.14 (.90, 1.38) 1.14 (.90, 1.38) 1.14 (.90, 1.38)
3 1.20 (.96, 1.44) 1.20 (.96, 1.43) 1.20 (.97, 1.43) 1.20 (.96, 1.44)
4 1.92 (1.67, 2.17) 1.91 (1.64, 2.18) 1.91 (1.66, 2.16) 1.92 (1.67, 2.17)
5 -.97 (-1.23, -.73) -.96 (-1.23, -.70) -.97 (-1.24, -.70) -.97 (-1.22, -.72)
6 -.62 (-.87, -.37) -.61 (-.86, -.36) -.62 (-.87, -.36) -.62 (-.86, -.38)
7 -.65 (-.91, -.41) -.64 (-.89, -.39) -.65 (-.90, -.39) -.65 (-.89, -.41)
8 .40 (.17, .62) .39 (.16, .62) .39 (.17, .62) .39 (.17, .61)
9 .82 (.59, 1.04) .81 (.58, 1.04) .81 (.59, 1.04) .81 (.59, 1.03)

10 .53 (.30, .76) .52 (.29, .75) .52 (.29, .76) .52 (.30, .74)
11 .17 (-.05, .39) .17 (-.06, .40) .17 (-.06, .39) .17 (-.05, .39)
12 -.37 (-.61, -.13) -.37 (-.61, -.13) -.37 (-.61, -.14) -.37 (-.61, -.13)
13 1.00 (.77, 1.22) .99 (.75, 1.22) .99 (.77, 1.21) .99 (.75, 1.23)
14 -1.55 (-1.85, -1.27) -1.55 (-1.86, -1.24) -1.55 (-1.85, -1.25) -1.55 (-1.84, -1.26)
15 1.29 (1.05, 1.52) 1.28 (1.04, 1.52) 1.29 (1.03, 1.54) 1.29 (1.05, 1.53)
16 1.09 (.88, 1.30) 1.08 (.85, 1.32) 1.09 (.86, 1.31) 1.09 (.85, 1.33)
17 -.87 (-1.12, -.62) -.86 (-1.12, -.60) -.86 (-1.13, -.60) -.86 (-1.11, -.61)
18 -.59 (-.83, -.34) -.58 (-.83, -.33) -.58 (-.82, -.35) -.58 (-.82, -.34)
19 -.64 (-.89, -.40) -.64 (-.89, -.39) -.65 (-.90, -.39) -.65 (-.89, -.41)
20 -1.28 (-1.57, -1.00) -1.28 (-1.56, -.99) -1.28 (-1.58, -.98) -1.28 (-1.55, -1.01)
21 .17 (-.05, .39) .17 (-.06, .40) .17 (-.06, .40) .17 (-.05, .39)
22 .77 (.55, .98) .76 (.53, .99) .76 (.53, .99) .76 (.54, .98)
23 .54 (.32, .76) .55 (.32, .78) .55 (.33, .77) .55 (.33, .77)
24 .76 (.53, .98) .76 (.53, .99) .76 (.52, 1.00) .76 (.54, .98)
25 -1.92 (-2.26, -1.59) -1.91 (-2.25, -1.56) -1.90 (-2.26, -1.55) -1.91 (-2.24, -1.58)
26 -.54 (-.78, -.31) -.53 (-.78, -.29) -.54 (-.79, -.28) -.54 (-.78, -.30)
27 .06 (-.18, .29) .06 (-.17, .29) .06 (-.17, .29) .06 (-.16, .28)
28 -.46 (-.70, -.23) -.46 (-.70, -.22) -.46 (-.70, -.22) -.46 (-.70, -.22)
29 2.17 (1.88, 2.44) 2.16 (1.88, 2.44) 2.15 (1.87, 2.43) 2.17 (1.90, 2.44)
30 -.08 (-.32, .14) -.07 (-.31, .16) -.08 (-.31, .16) -.08 (-.32, .16)
31 -.80 (-1.06, -.54) -.79 (-1.05, -.53) -.79 (-1.06, -.53) -.79 (-1.04, -.54)

aThe restriction, Ejbj = 0, has been applied.

Table 21
Correlations (Lower Triangle) and Root Mean Squared Differences (Upper Triangle) of the English Usage

Item Parameter Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML),
Marginal Maxium Likelihood (MML), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling CML MML JML
Gibbs Sampling .008 .009 .006

CML 1.000 .008 .005
MML 1.000 1.000 .007
JML 1.000 1.000 1.000
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Table 22
Ability Estimates and 95% Confidence/Posterior Intervals of the English Usage Test Data from Gibbs Sampling, Conditional Maximum Likelihood (CML),

Marginal Maxium Likelihood (MML) with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Score
Gibbs Sampling° CML

MML
JMLML EAP

Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval Ability Conf. Interval

0
2
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

-.2.69
-2.17
-1.74
-1.55
-1.37
-1.20
-1.03
-.86
-.71
-.58
-.42
-.27
-.13

.02

.15

.30

.45

.57

.74

.89
1.04
1.20
1.37
1.56
1.72
1.95
2.16
2.40
2.68
2.98

(-3.90, -1.68)
(-3.16, -1.29)
(-2.66, -.93)
(-2.45, -.71)
(-2.27, -.56)
(-2.04, -.39)
(-1.87, -.26)
(-1.63, -.10)

(-1.48, .07)
(-1.37, .19)
(-1.20, .32)
(-1.01, .48)
(-.88, .58)
(-.73, .77)
(-.57, .89)

(-.44, 1.09)
(-.34, 1.21)
(-.20, 1.33)
(-.01, 1.47)

(.10, 1.64)
(.28, 1.83)
(.42, 1.97)
(.56, 2.20)
(.71, 2.42)
(.88, 2.61)

(1.05, 2.90)
(1.26, 3.15)
(1.45, 3.45)
(1.66, 3.83)
(1.88, 4.18)

-3.17
-2.31
-2.00
-1.74
-1.51
-1.29
-1.10
-.91
-.73
-:56
-.39
-.23
-.07

.09

.26

.42

.58

.75

.93
1.11
1.31
1.52
1.75
2.00
2.30
2.66
3.13
3.90

(-4.68, -1.67)
(-3.44, -1.18)
(-3.04, -.97)
(-2.72, -.77)
(-2.43, -.58)
(-2.18, -.41)
(-1.96, -.24)
(-1.75, -.07)

(-1.55, .09)
(-1.37, .25)
(-1.19, .40)
(-1.02, .56)
(-.85, .72)
(-.69, .88)

(-.53, 1.04)
(-.38, 1.21)
(-.22, 1.39)
(-.06, 1.57)

(.10, 1.76)
(.26, 1.97)
(.43, 2.19)
(.60, 2.43)
(.79, 2.71)
(.98, 3.02)

(1.18, 3.41)
(1.41, 3.90)
(1.65, 4.61)
(1.87, 5.93)

-3.17
-2.31
-2.00
-1.74
-1.51
-1.30
-1.10
-.91
-.73
-.56
-.39
-.23
-.07

.09
.26
.42
.58
.75
.93

1.11
1.31
1.52
1.75
2.00
2.30
2.66
3.13
3.90

(-4.67, -1.67)
(-3.44, -1.18)

(-3.04, -.97)
(-2.71, -.77)
(-2.43, -.58)
(-2.18, -.41)
(-1.96, -.24)
(-1.75, -.07)

(-1.55, .09)
(-1.37, .25)
(-1.19, .40)
(-1.02, .56)
(-.86, .72)
(-.69, .88)

(-.53, 1.04)
(-.38, 1.21)
(-.22, 1.39)
(-.06, 1.57)

(.10, 1.76)
(.26, 1.97)
(.43, 2.19)
(.60, 2.43)
(.79, 2.71)
(.98, 3.02)

(1.18, 3.41)
(1.41, 3.90)
(1.65, 4.61)
(1.87, 5.92)

-2.65
-2.14
-1.73
-1.55
-1.36
-1.15
-.98
-.85
-.74
-.61
-.42
-.23
-.08
-.03
.12
.24
.41
.61
.78
.90

1.01
1.16
1.35
1.56
1.75
1.92
2.13
2.39
2.66
2.97

(-3.84, -1.66)
(-3.11, -1.16)
(-2.53, -.92)
(-2.39, -.72)
(-2.26, -.46)
(-2.02, -.28)
(-1.73, -.23)
(-1.50, -.21)
(-1.41, -.07)

(-1.40, .18)
(-1.30, .45)
(-1.06, .60)
(-.77, .62)
(-.56, .62)
(-.49, .73)
(-.51, .98)

(-.45, 1.27)
(-.25, 1.46)

(.03, 1.52)
(.25, 1.55)
(.33, 1.69)
(.35, 1.96)
(.45, 2.25)
(.68, 2.44)
(.92, 2.57)

(1.08, 2.77)
(1.19, 3.08)
(1.37, 3.40)
(1.62, 3.71)
(1.85, 4.08)

-3.20
-2.33
-2.03
-1.76
-1.52
-1.31
-1.11
-.92
-.74
-.57
-.40
-.23
-.07

.09

.26

.42

.59

.76

.94
1.13
1.32
1.53
1.76
2.02
2.32
2.68
3.16
3.92

(-4.71, -1.69)
(-3.47, -1.19)
(-3.07, -.99)
(-2.74, -.78)
(-2.44, -.60)
(-2.19, -.43)
(-1.97, -.25)
(-1.76, -.08)

(-1.56, .08)
(-1.37, .23)
(-1.20, .40)
(-1.01, .55)
(-.85, .71)
(-.69, .87)

(-.52, 1.04)
(-.38, 1.22)
(-.21, 1.39)
(-.06, 1.58)

(.10, 1.78)
(.27, 1.99)
(.44, 2.20)
(.61, 2.45)
(.80, 2.72)

(1.00, 3.04)
(1.20, 3.44)
(1.43, 3.93)
(1.67, 4.65)
(1.90, 5.94)

°The restriction, Ejbj = 0, has been applied.

Table 23
CorrelationS (Lower niangle) and Root Mean Squared Differences (Upper Triangle) of the English Usage Ability
Estimates from Gibbs Sampling, Conditional Maximum Likelihood (CML), Marginal Maxium Likelihood (MML)

with Maximum Likelihood (ML) and Expected A Posteriori (EAP), and Joint Maximum Likelihood (JML)

Method Gibbs Sampling
MML

JMLCML ML EAP
Gibbs Sampling .403 .404 .031 .417

CML .996 .000 .415 .016
MML/ML .996 1.000 .416 .015

MML/EAP 1.000 .996 .996 .429
JML .996 1.000 1.000 .996
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Figure Captions

Figure 1. The Gibbs sampling algorithm.

Figure 2. A directed acyclic graph for LSAT6 data.

Figure 3. Convergence with starting values for LSAT6 item 1.

Figure .4. Gelman and Rubin shrink factors for LSAT6 items.

Figure 5. Trace lines of the sampled values and kernel density plots for LSAT6 items.

Figure 6. Convergence with starting values for Memory Test item 1.

Figure 7. Gelman and Rubin shrink factors for Memory Test items.

Figure 8. Trace lines of the sampled values and kernel density plots for Memory Test items.

Figure 9. Convergence with starting values for NAEP item 1.

Figure 10. Gelman and Rubin shrink factors for NAEP items.

Figure 11. Trace lines of the sampled values and kernel density plots for NAEP items.

Figure 12. Convergence with starting values for Usage item 1.
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Appendix

model lsat6;

const

I = 1000,

J = 5;

var

y[I,J], p[I,J], theta[I], alpha, zeta[J], b[J];

data in "lsat6-s.dat";

inits in "rasch.in";

{

for (i in 1:I) {

for (j in 1:J) {

logit(p[i,j]) <- alpha*theta[i] beta[j];

y[i,j] dbern(p[i,j]);

1

theta[i] dnorm(0,1);

for (j in 1:J) {

beta[j] dnorm(0,0.0001);

b[j] <- beta[j] mean(betap);
1

alpha dnorm(0,0.0001) I(0,);

1

6 0
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